

Multi-Qubit Coherent Operations (MQCO)

Investigating the Challenges to Large-Scale Systems

Program Manager: Dr. David Moehring; E-mail: david.moehring@iarpa.gov

Quantum computers will likely consist of millions of qubits

- Before MQCO most research concentrated on improving fidelity in single, isolated qubits
- Little was known about the challenges that would arise when multiple qubits had to coexist and be controlled in close proximity to each other

The program bootstraps its way up from qubits to systems to algorithms

Six performing teams and two supporting government labs

Four different qubit technologies: Ion traps, superconducting qubits, neutral atoms, and quantum dots

Phase 1 (2010-2012): assemble a multi-qubit system, validate its basic functionality

Phase 2 (2012-2013): quantify the performance of multi-qubit system, and develop a test plan for phase 3 goals

Phase 3 (2013-2015): demonstrate a quantitatively improved multi-qubit system that implements a multi-qubit quantum algorithm

Forcing the building of small systems of qubits implementing quantum algorithms uncovers obstacles that only emerge in such a context

We project four main issues for multi-qubit operations:

- **Control**: fine-grained operation on specific qubits
- **Crosstalk:** interference of qubits with each other
- Fabrication yield: keeping the system populated
- Spatial challenges caused by an increased footprint

MQCO has demonstrated the largest number of coupled qubits so far for each of the technologies it is pursuing

- Ion traps: 11
- **Superconducting qubits: 9**
- Neutral atoms: 6
- Quantum dots: 4
- Publications: >370; 32 in Nature and Science

We've realized an encoded "logical" qubit construct with 7 trapped ions that detects and corrects one error

Demonstrated all ingredients including a universal gate set to implement a topological error correcting code

Demonstrated error detection in a superconducting qubit system

 Performed 5-qubit surface code bit-flip error detection in a 9-qubit chip with high-fidelity gates

These first proofs of concept pave the way for the next phase of quantum computing research

- Building on MQCO it will be possible to begin
 - exploring the realization of a true logical qubit
 - exploring modular coupling of multi-qubit systems